Rossi A. G.
· El nuevo observatorio será instalado en Los Andes, a una altitud mayor a los 4,600 metros sobre el nivel del mar.
· Permitirá observar regiones como el centro de nuestra galaxia, donde se encuentra un hoyo negro de cuatro millones de masas solares.
· Participan miembros de la colaboración HAWC, y diferentes grupos de investigación de México como el INAOE
El 1o de julio de 2019, 36 instituciones de nueve países, entre ellos México, a través del proyecto HAWC, firmaron oficialmente un acuerdo para crear una nueva colaboración internacional con el objetivo de hacer la investigación y el desarrollo de la tecnología necesaria para construir un nuevo observatorio de rayos gamma de campo de visión amplio que estará ubicado en Los Andes y que cubrirá el hemisferio sur.
Este observatorio complementará al observatorio HAWC de rayos gamma situado en el volcán Sierra Negra, Puebla, en el hemisferio norte. Los países fundadores del Proyecto SWGO (Southern Wide field-of-view Gamma ray Observatory) son Alemania, Argentina, Brasil, Italia, México, Portugal, Reino Unido, República Checa y Estados Unidos. Con esto, se unifica una comunidad mundial alrededor del proyecto SWGO de diferentes grupos dedicados a este campo.
“Esta nueva colaboración nace principalmente del éxito que ha tenido el observatorio HAWC durante varios años de operación y explotación científica, usaremos el conocimiento adquirido en HAWC para poder construir un observatorio mas poderoso en el hemisferio sur, que no competirá con HAWC sino que serán complementarios para hacer un mapa del cielo completo.” afirmó el Dr. Ibrahim Torres, Jefe de sitio del observatorio HAWC y representante institucional por parte del Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) ante el proyecto SWGO.
Después de esta primera etapa de planeación y desarrollo, que durará un máximo de 3 años, se planea instalar el nuevo observatorio a una altitud mayor a los 4,600 metros sobre el nivel del mar. Su posición en el hemisferio sur permitirá observar directamente una de las regiones más interesantes: el centro de nuestra galaxia, donde se encuentra un hoyo negro de cuatro millones de masas solares. Hacer observaciones con un instrumento de amplio campo de visión es ideal para estudiar fuentes variables en el tiempo y para buscar regiones extendidas de emisión como las llamadas Burbujas de Fermi alrededor del centro galáctico o buscar señales de la aniquilación de materia obscura, así como observar fenómenos inesperados.
Con ello, se busca investigar algunas de las interrogantes más apremiantes sobre nuestro Universo. Se observarán rayos gamma que son fotones, partículas de luz, billones de veces más energéticos que la luz visible y que permiten explorar los fenómenos más extremos del Universo, buscar los orígenes de los rayos cósmicos de alta energía, y explorar la frontera de la física buscando partículas de materia obscura y posibles desviaciones de la teoría general de la relatividad de Einstein.
Para el grupo de investigadores en México, hacer un observatorio de la siguiente generación y con mayor sensibilidad en la Cordillera de los Andes “va a permitir observar continuamente toda la bóveda celeste en rayos gamma de la más alta energía”, aseguró el investigador.
Observar el Universo desde la Tierra
La detección directa de rayos gamma primarios solamente es posible con detectores satelitales como Fermi. Sin embargo, dados el alto costo y las pequeñas dimensiones de los instrumentos que se pueden poner en órbita, esta técnica tiene limitaciones. A energías de más de 1 TeV (teraelectronvolt) se necesitan detectores de cientos a miles de metros cuadrados, por lo que es imposible tener uno en órbita.
Afortunadamente a estas energías los rayos gamma son suficientemente energéticos como para generar chubascos atmosféricos cuyas partículas llegan a la superficie de la Tierra y pueden ser detectados por grandes arreglos de instrumentos.
Para lograrlo existen dos tipos de detectores Cherenkov que son complementarios: los atmosféricos y los de agua. Los primeros, como el observatorio Cherenkov Telescope Array (CTA) que está en construcción, consisten en platos parabólicos que enfocan una pequeña región del cielo operando solamente de noche. Mientras que los detectores de luz Cherenkov en agua, como HAWC y SWGO, son grandes arreglos de contenedores de agua que observan simultáneamente una gran región del cielo, día y noche.
El nuevo observatorio detectará las partículas producidas en los chubascos atmosféricos al nivel del suelo, como lo hace HAWC, sin embargo, para ser diez veces más sensitivo, la colaboración desarrollará un nuevo concepto de detectores y diseñará una electrónica de procesamiento de las señales más sofisticada.
La colaboración tiene como objetivo lograr el observatorio más poderoso en el mejor sitio y al menor costo. Para ello se harán diversos prototipos de detectores que pueden ser probados en el sitio de HAWC, se harán simulaciones muy detalladas de la respuesta de todo el arreglo para optimizarlo y se construirá un proyecto piloto en el sitio escogido para optimizar in situ los métodos de construcción, debido a que las condiciones a más de 4,600 m de altura son muy diferentes a lo que estamos acostumbrados.
La primera detección de rayos gamma de alta energía, arriba de teraelectronvolt (TeV), se hizo hace 30 años, y se descubrió que provenían de la nebulosa del Cangrejo creada por la explosión una supernova en el año 1054, comentó por su parte el Dr. Alberto Carramiñana Alonso, investigador del INAOE. “Actualmente se conocen cerca de 200 fuentes emisoras de gammas de mas de 1 TeV. HAWC ha colaborado de manera significativa en este trabajo de detección, por ejemplo, ha encontrado que la nebulosa del Cangrejo y otras cinco fuentes, todas ellas dentro de nuestra galaxia, llegan a emitir rayos gamma cien veces más energéticos. Se ha visto también que galaxias muy lejanas con núcleos activos emiten ráfagas de rayos gamma a escalas de tiempo que van de segundos a días”, agregó.
Con el fin de entender qué son los fenómenos que crean estos eventos tan extremos se ha creado una red de observatorios que colaboran monitoreando las mismas fuentes en ondas de radio, en luz visible, rayos-X, rayos gamma, así como con otras partículas como son los neutrinos y las ondas gravitacionales. El nuevo observatorio en el sur va a jugar un papel importante en estas investigaciones.
La participación de México en el proyecto SWGO es a través de un consorcio de instituciones representadas por el Instituto de Física de la UNAM constituido por grupos del Centro de Investigación en Computación, Instituto Politécnico Nacional; Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla; los institutos de Astronomía, Ciencias Nucleares, Física y Geofísica de la UNAM; el Instituto Nacional de Astrofísica, Óptica y Electrónica; la Universidad Autónoma del Estado de Hidalgo; el Departamento de Física y de Ciencias Naturales y Exactas, de la Universidad de Guadalajara; Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo; la Facultad de Ciencias en Física y Matemáticas, de la Universidad Autónoma de Chiapas; y la Universidad Politécnica de Pachuca.
Estas notas te pueden interesar
-
NP- Kénder Alexzi, presenta su poemario titulado “Latidos y Silencios”
-
En 2023, el sector de la cultura contribuyó con un monto de 820 963 millones de pesos de PIB
-
Agenda cultural llena para el puente revolucionario en la Ciudad de Puebla
-
¡Noche de Museos en Puebla capital este sábado 16!!!!!!!
-
Irene Sundel y sus ecos cromáticos en el Museo Federico Silva